
 1

Systemtestplan

Project: PharmaPartners

Project team: S3-DB03T group 3

Team members:

Name E-mail

Bart Blaak b.blaak@student.fontys.nl

Sibe van Etten sibe.vanetten@student.fontys.nl

Hugo Mkandawire h.mkandawire@student.fontys.nl

Maarten Reimus m.reimus@student.fontys.nl

Kacper Serewiś k.serewis@student.fontys.nl

Kevin van der Wouw kevin.vanderwouw@student.fontys.nl

Client: Pharmapartner
Version: 1.0
Version date:
Status: Concept

mailto:b.blaak@student.fontys.nl
mailto:sibe.vanetten@student.fontys.nl
mailto:h.mkandawire@student.fontys.nl
mailto:m.reimus@student.fontys.nl
mailto:k.serewis@student.fontys.nl
mailto:kevin.vanderwouw@student.fontys.nl

 2

Documenthistory
Version Changes Author Date

1.0 27-10-2020

 3

Content

DOCUMENTHISTORY 2

C1 PREFACE 4

C2 BASELINE SITUATION 5

C3 PRODUCT RISK ANALYSIS 7

C4 TEST STRATEGY 9

C5 LOGICAL TESTCASES 11

C6 FYSIEKE TESTCASES 14

C7 TESTCOVERAGE 19

C8 UNITTESTEN AND CODE COVERAGE 19

C9 STATIC CODE ANALYSE 20

C10 CONCLUSION (ALLEEN VAN TOEPASSING IN TESTRAPPORT) 21

 4

C1 Preface
The goal of this application is to make its user more aware of the possible
side effects of taking multiple medications Once the user has 2 medicines on
their list that can cause problems, the application will show a warning which
medication does not go well together.

The function of this document is to get an understanding wich parts of the
application we have to test and what the importance is. If the importance is
high there are more test that need to secure that everything works. The parts
that we are going to test are listed in the analysis document in the Functional
requirements.

There are 2 applications that we have to test: the back- and the frontend also,
we have to test the communication between those applications.

From all the results that we get from the test we write a separate report.

 5

C2 Baseline situation
In this chapter we describe the baseline situation for the systemtest. The
different versions from the software are described below in table 1.
Also all the test data we use to make the test successful is described in a
simple and efficient way. We do this to make all our tests reproducible.

The different technologies that we use with the corresponding versions are:

Technology: Version:
Angular 10

Spring boot 2.3.4.RELEASE

Java JDK 11.0.7

Junit 5
Table 1

The test data that we use is described below in table 2.

Model: Number: Variable
(type):

Value:

Patient 1 Id (UUID) 550e8400-e29b-41d4-a716-446655440000

 Username
(String)

Test-Patient

 Email
(String)

Test-Patient@hotmail.com

 Password
(String)

Test123!

 Emailverified
(Boolean)

False

 2 Id (UUID) 5c0e175d-8979-4052-8ea8-4860923365d6

 Username
(String)

admin

 Email
(String)

admin@admin.nl

 Password
(String)

Admin1!

 Emailverified
(Boolean)

True

 3 Id (UUID) 5c43175d-8979-4052-8ea8-4852333365r6

 Username
(String)

Jan_van_Dijk

 Email
(String)

janvandijk@upcmail.com

 Password
(String)

kBe(};X+<J_+ba3!>7"hY~!-
vV_$/XA(+Swp}vM!,Y`Cw^c@#&/H\=k~\Seg"6RVz>PM2:%gw{R^!%qx%"@{6QZ@Z7(`@YAhQ?mVG3=h4K*_\`MNL$P%?ZtHG<J>MW#f?=;?6x;(8YtqYrtHft\yBG+j{m+RMMnjhR}UDBfS5Z<T})f@.hX-
{jQUpcP:*>9mp!?Hjvv!>xGE6+zZGg_}hBZ<$!YC7xJ3XY@s(YAtEVSj:!Rm;4JCd,Lv'\6GB38S

 Emailverified
(Boolean)

False

Medicine 1 Id (UUID) 907bf236-c514-441e-a90b-28da1ce5b340

mailto:Test-Patient@hotmail.com
mailto:janvandijk@upcmail.com

 6

 Name
(String)

Paracetamol

 Description
(String)

Painkiller in tablet shape.

 Type (int) 2
Table 2

 7

C3 Product Risk Analysis

In this chapter, the product risk analysis is described. The time available for
testing is limited; not everything can be tested equally heavily. So choices
have to be made. The aim is to distribute the test capacity as effectively and
efficiently as possible over the overall test trajectory.

The test strategy records what is going to be tested with which heaviness and
aims to find the most important errors as early as possible at the least cost,
i.e. with optimal use of available capacity and time.

The first step in drawing up the test strategy is to carry out a product risk
analysis. In consultation with the client and other stakeholders, the product
risks are identified. The level of risk (the risk class) depends on the failure rate
on one side (what are the chances of it going wrong?) and on the other side of
the damage for the organization if it does indeed go wrong.

The risk class (RC) then determines the severity of the test. Risk class A is
the highest risk class and C is the lowest. The test strategy aims to cover the
risks with the highest risk class as early as possible in the test process.

Product risk analysis (PRA) is determined by determining per test target:
failure probability, damage, risk class and severity class. The risk class is
equal to damage * failure rate. The severity class is based on the risk class.
Specify how the severity class is determined. Such as:

Damage: 1 = Low, 2 = Middle, 3 = High
Failure rate: 1 = Low, 2 = Middle, 3 = High
Risk class = Damage * Failure chance
Severity Class C: Risk Class ≤ 2
Severity class B: 2 < risk class ≤ 6 Severity Class A: risk class > 6

 Test target Damage Failure
chance

Risk class Severity class

Action F1 3 1 3 B

Action F2 3 1 3 B

Action F3 2 1 2 C

Action F4.1 1 1 1 C

Action F4.2 1 1 1 C

Action F5 3 1 3 B

Action F6 3 1 3 B

Action F7 1 1 1 C

Action F8 2 1 2 C

Action F9 1 1 1 C

Action F10 3 1 3 B

Action F11 3 2 6 A

 8

Action F12 3 1 3 B

Action F13 2 1 2 C

Action F14 2 1 2 C

Action F15 1 1 1 C

Action F16 1 1 1 C

Action F17 1 1 1 C

Action F18 1 1 1 C

Action F19 1 1 1 C

Action F20 2 1 2 C

Action NF1 1 1 1 C

Action FN2 1 1 1 C

Rule R1 2 1 2 C

Rule R2 2 1 2 C

Rule R3 2 1 2 C

Rule R4 1 1 1 C

Rule R5 1 1 1 C

Qual.attr. Q1 1 1 1 C

Qual.attr. Q2 1 1 1 C

Qual.attr. Q3 1 1 1 C

Qual.attr. Q4 1 1 1 C

Qual.attr. Q5 1 1 1 C

Qual.attr. Q6 1 1 1 C

Qual.attr. Q7 3 1 3 B

Qual.attr. Q8 1 1 1 C

Qual.attr. Q9 1 1 1 C

Qual.attr. Q10 1 1 1 C

Qual.attr. Q11 1 1 1 C

Qual.attr. Q12 1 1 1 C

 9

C4 Test strategy

In this chapter, on the basis of the product risk analyst, the test strategy (the
what) is drawn up and translated into a concrete test suit (the how).
Indicate how you intend to test or hedge the risks per Test goal (see chapter
3). Just describe how you're going to handle this. Running is not part of the
command.
For each risk from the product risk analysis, the risk class determines the
severity of the test. Risk class A is the highest risk class and C is the lowest.
The test strategy is then aimed at covering the risks with the highest risk class
as early as possible in the test process.
Design: With a heavier risk class, you want to use more test types and a
heavier test per test type. Indicate this in the table below with a ball or
asterisk. Such as:
Risk class A must have □□□ in at least one test type, risk class B in at least
one test type □□ and risk class C in at least one test type □
Note: This table lists a number of test types, but only as an example. In your
project there may be more/less and/or other and/or differently mentioned test
types. For 3rd semester, assume minimum unit testing and automatic and
manual system testing. Preferably also Component Testing, which allows you
to test the individual tests in a distributed system.

Test target PRA UT CT IT ST
manual

ST automatic

Functionaliteit

Action F1 B * *

Action F2 B * *

Action F3 C *

Action F4.1 C *

Action F4.2 C *

Action F5 B * *

Action F6 B * *

Action F7 C *

Action F8 C *

Action F9 C *

Action F10 B * *

Action F11 A * * *

Action F12 B * *

Action F13 C *

Action F14 C *

Action F15 C *

Action F16 C *

Action F17 C *

Action F18 C *

Action F19 C *

 10

Action F20 C *

Action NF1 C *

Action FN2 C *

Rule R1 C *

Rule R2 C *

Rule R3 C *

Rule R4 C *

Rule R5 C *

Qual.attr. Q1 C *

Qual.attr. Q2 C *

Qual.attr. Q3 C n/a

Qual.attr. Q4 C *

Qual.attr. Q5 C *

Qual.attr. Q6 C *

Qual.attr. Q7 B * *

Qual.attr. Q8 C *

Qual.attr. Q9 C *

Qual.attr. Q10 C *

Qual.attr. Q11 C *

Qual.attr. Q12 C *

- totaal

Gebruiksvriendelijkheid

Performance

- online

- batch

Beveiliging

Inpasbaarheid

Explanation of the table above:
PRA-RC Risk class from product risk analysis (PRA): risk table

Keys Review/review of the various intermediates such as

requirements, functional design, technical design
Development
test

Unittest en Unitintegratietest

ST System test
IT Integration test
CT Component test
UT Unit Test
 Limited dynamic test
 Average dynamic test
 Heavy dynamic test

 11

C5 Logical test cases

This chapter describes the logical testcases. A logical testcase is derived from
the requirements of the analysis document. In general, multiple logical
testcases can be defined for a requirement.

ID Requirement
ID

Description Expected outcome

LTC-
1.1

F1 User tries to register without
an email address.

False result

LTC-
1.2

F1 User registers with a
password of 256 characters.

False result

LTC-
1.3

F1 User tries to register with an
email that already exists in
the system.

False result

LTC-
1.4

F1 User tries to register without
a password.

False result

LTC-
1.5

F1 User registers with a valid
email address (that’s not
already in the DB) and a
valid password.

Good result

LTC-
1.6

F1 User registers without a
username.

False result

LTC-
1.7

F1 User registers with an invalid
email address.

False result

LTC-
2.1

F2 The user tries to login with
an invalid email address.

False result

LTC-
2.2

F2 The user logs in with the
correct email address and
password.

Good result

LTC-
3.1

F3 The user tries to reset their
password by entering the
exact same password they
already had.

Good result

LTC-
3.2

F3 The user resets their
password with a new
password.

Good result

LTC-
3.3

F3 The user tries to reset their
password with an invalid
password.

False result

LTC-
4.1.1

F4.1 The user goes to profile to
see their data.

Good result

LTC-
4.2.1

F4.2 The user changed his
records but forgets leaves an
empty email address.

False result

LTC-
4.2.2

F4.2 The user changed his
personal data all correctly.

Good result

LTC-
5.1

F5 The user registrates a new
medication.

Good result

 12

LTC-
5.2

F5 The user tries to register a
new medication but forgets
to fill in a few fields.

False result

LTC-
5.3

F5 The user tries to register a
new medication but this
medicine already exists.

False result

LTC-
6.1

F6 The user deletes an
medicine.

Good result

LTC-
7.1

F7 The user edits an medicine. Good result

LTC-
7.2

F7 The user tries to edit a
medication but forgets to fill
in a few fields.

False result

LTC-
8.1

F8 The user goes to medicines
to see her/his own medicine
list.

Good result

LTC-
9.1

F9 The user goes to medicine
history to see her/his
medicine history.

Good result

LTC-
10.1.1

F10.1 The user goes to medical
personal data and add their
blood pressure, weight and
length.

Good result

LTC-
10.1.2

F10.1 The user goes to medical
personal data and leaves
fields open.

False result

LTC-
10.1.3

F10.1 The user goes to medical
personal data and fills in
negative values.

False result

LTC-
10.2.1

F10.2 The user goes to medical
personal data and changes
their blood pressure, weight
and length.

False result

LTC-
10.2.2

F10.2 The user goes to medical
personal data and leaves
fields open.

False result

LTC-
10.2.3

F10.2 The user goes to medical
personal data and fills in
negative values.

False result

LTC-
11.1

F11 The user goes to check their
compatibility.
Person 1 is good result and
person 2 is a false result.

Good result

LTC-
12.1

F12 The user adds one disease
from the list of diseases.

Good result

LTC-
12.2

F12 The user adds all available
diseases.

Good result

LTC-
13.1

F13 The user changes one
disease into a different one.

Good result.

 13

LTC-
14.1

F14 The user removes a disease
from their diseases.

Good result

LTC-
14.2

F14 The user removes all of their
diseases.

Good result

 14

C6 Physical test cases

This chapter describes the physical testcases. A physical testcase is derived
from the corresponding logical testcase. Also give the expected result. The
"result" column is intended for the test report. This column uses colors to
indicate different results. Below is an overview of the colors and their
meaning:

 The test has been passed and there is nothing to note.
 The test seems to be going well, but there is something that can do

better.

 The test failed.
 This test does not apply to the current version of the application and

has not been performed.

 This is not a test but an action that needs to be taken in order to be
able to perform subsequent tests (initialization action).

ID Description Result

TC-1.1 Register an account.
Use the Username and Password from Model ‘Patient 1’. Don’t fill
in an email address.
Expected result: A message will appear, saying “Please fill in a
password.”

TC-1.2 Register an account.
Use the Email, Username and Password from Model ‘Patient 3’.
Expected result: a message will pop up saying that the password is
too long.

TC-1.3 Register an account.
Use the Email, Username and Password from Model ‘Patient 2’.
Expected result: a message will pop up saying that the Email
address is already used.

TC-1.4 Register an account.
Use the Email and Username from Model ‘Patient 1’, but don’t fill in
a password.
Expected result: a message will appear saying “Please fill in a
password.”

TC-1.5 Register an account.
Use the Email, Username and Password from Model ‘Patient 1’.
Expected result: new user account is registered and directly logged
in.

TC-1.6 Register an account.
Use the Email and Password from Model ‘Patient 1’. Don’t fill in a
username.
Expected result: a message will appear, saying “Please fill in a
username”.

TC-1.7 Register an account. Use the Email, Password and Username from
Model ‘Patient 1’. Leave out the ‘@’ from the email address.

 15

Expected result: a message appears saying the used email
address is invalid.

TC-2.1 Log in.
Use Email, Username and Password from Model ‘Patient 1’, but
leave out the ‘@’.
Expected result: Message gets displayed, saying “Used email
address is invalid.”

TC-2.2 Log in.
Use Email, Username and Password from Model ‘Patient 2’.
Expected result: user is logged in.

TC-3.1 Reset password:
Use Model ‘Patient 1’.
Make sure the account’s password is already set to the Password
of Model ‘Patient 1’.
Reset the password and change the password to the exact same
password as in Model ‘Patient 1’.
Expected result: Password is successfully changed.

TC-3.2 Reset password.
Use Model ‘Patient 1’.
Reset the password to: R0tterdam1.
Expected result: Password is successfully changed.

TC-3.3 Try to reset password.
Use Model ‘Patient 1’.
Reset the password to: rotterdam.
Expected result: Message appears, saying “Please use at least 8
characters, 1 number and 1 special character”.

TC-4.1.1 Go to personal records.
Expected result: all records are shown.

TC-4.2.1 Go to edit and fills in the following values:
Username: Henk
Email:
Password: Henk
And the user then clicks on edit.
Expected result: Personal records of patient 1 are not changed.

TC-4.2.2 Go to edit and fills in the following values:
Username: Henk
Email: HenkieeTankie@gmail.com
Password: Henk-Tank!
And the user then clicks on edit.
Expected result: Your personal records are changed.

TC-5.1 User registrates medicine.
Fill in values of medicine 1.
Expected result: New medicine registered.

TC-5.2 User registrates medicine.
Fill in values of medicine 1.
Name: Paracetamol
Description:
Type: 1
Then press the edit button.
Expected result: There is a field empty and the medicine is not

 16

registered.

TC-5.3 User registrates medicine.

Fill in values of medicine 1 and then press the save button.

Expected result: The medicine already exists and is not added to
your list of medicines.

TC-6.1 Go to your list of medicines.
After you see the list of medicines search the medicine with the
values of medicine 1 and then press delete.
Expected result: The medicine is deleted from your list.

TC-7.1 User edits an medicine.
Go to your list of medicines.
After you see the list of medicines search the medicine with the
values of medicine 1 and then press edit.

Then fill in values of medicine 1.
Name: Diclofinac,
Description: pijnstiller,
Type: 3
Then press the edit button.
Expected result: The medicine is changed.

TC-7.2 User edits an medicine.
Go to your list of medicines.
After you see the list of medicines search the medicine with the
values of medicine 1 and then press edit.

Then fill in values of medicine 1.
Name: Diclofinac,
Description: “ ”,
Type: “ ”
Then press the edit button.
Expected result: The medicine is not changed because a few fields
don`t have values.

TC-8.1 Go to your own list of medicines.
Expected result: You see a list of your own medicines.

TC-9.1 Go to your own history of medicines.
Expected result: You see a list of your own medicines history.

TC-
10.1.1

Go to add medical personal data.
Add the following values to the fields:
Blood pressure: 100,
Weight: 86,
Height: 178
And then press on add data.
Expected result: Medical personal data is added.

TC-
10.1.2

Go to add medical personal data.
Add the following values to the fields:
Blood pressure: 100,
Weight: “ ”,
Height: 178

 17

And then press on change data.
Expected result: Medical personal data is added.

TC-
10.1.3

Go to add medical personal data.
Add the following values to the fields:
Blood pressure: -11,
Weight: -3,
Height: -65
And then press on add data.
Expected result: Medical personal data is changed.

TC-
10.2.1

Go to change medical personal data.
Add the following values to the fields:
Blood pressure: 90,
Weight: 96,
Height: 175
And then press on change data.
Expected result: Medical personal data is changed.

TC-
10.2.2

Go to change medical personal data.
Add the following values to the fields:
Blood pressure: 90,
Weight: “ ”,
Height: “ ”
And then press on change data.
Expected result: Medical personal data is changed.

TC-
10.2.3

Go to change medical personal data.
Add the following values to the fields:
Blood pressure: -11,
Weight: -3,
Height: -65
And then press on change data.
Expected result: Medical personal data is added.

TC-11.1 Go to check compatibility.
Expected result for patient 1: you get a warning.
Expected result for patient 2: you don`t get a warning.

TC-12.1 Go to personal diseases.
Add disease “Kidney cancer”.
Expected result: “Kidney cancer” is added to diseases.

TC-12.2 Go to personal diseases.
Add all available diseases.
Expected result: all diseases are added to you account’s diseases.

TC-13.1 Go to your account’s added personal diseases.
Make sure you have “Kidney cancer” added.
Change “Kidney cancer” into “Lung cancer”.
Expected result: “Kidney cancer” is changed to “Lung cancer”.

TC-14.1 Go to your account’s added personal diseases.
Make sure “Lung cancer” is added.
Remove “Lung cancer”.
Expected result: “Lung cancer” is removed.

TC-14.2 Go to your account’s added personal diseases.
Make sure you have at least 5 diseases added.
Remove all personal diseases from the account.

 18

Expected result: All diseases are successfully removed.

 19

C7 Test coverage

This chapter describes which requirements are covered with which physical
test cases. You do this using a Requirements Traceabilty Matrix.

C8 Unittesten and code coverage

This chapter describes the strategy you have used when writing the unit tests.
Describe which classes and methods you will write the unit tests for and why
you chose these classes/methods. Show the test results and code coverage
in the test report, for example by taking a screenshot. Also describe your
conclusions based on the test results and code coverage.

 20

C9 Static code analyse

This chapter describes how you will investigate static code analysis. This can
be done with the help of SonarQube. Show the results of the analysis in the
test report, for example by taking a screenshot. Also describe your
conclusions based on the results and indicate where you see opportunities to
further improve the code.

 21

C10 Conclusion (alleen van toepassing in testrapport)

Describe here the overall conclusion based on the results of the
implementation of the system test, unit tests and static code analysis. Also
indicate whether the application can be delivered, i.e. indicate whether the
application meets the requirements (functional and non-functional
requirements) as described in the analysis document. If not, please indicate
what needs to be done before the application can be delivered.

	Documenthistory
	C1 Preface
	C2 Baseline situation
	C3 Product Risk Analysis
	C4 Test strategy
	C5 Logical test cases
	C6 Physical test cases
	C7 Test coverage
	C8 Unittesten and code coverage
	C9 Static code analyse
	C10 Conclusion (alleen van toepassing in testrapport)

